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Introduction 
  
         When studying metastable electronic states that can decay by ejection of 
an electron, one cannot straightforwardly employ variation-based electronic 
structure tools[2]. For such cases, the lowest-energy state corresponds to that of a 
free electron (infinitely distant and with zero velocity) plus a system with one 
fewer electrons. Standard methods thus suffer so-called variational collapse and 
tend to converge to such ‘free-electron’ descriptions. Let’s consider an example 
offered by the formamide molecule near its equilibrium geometry. 
The π-symmetry molecular orbitals (MOs) are depicted qualitatively below 
where their nodal characteristics are emphasized. The lowest two π MOs 
describe the delocalized π bonding and non-bonding orbitals. The unoccupied 
MO is the anti-bonding π* orbital. 



 
An SCF calculation using a correlation consistent augmented polarized valence 
double-zeta (aug-cc-pVDZ) basis set produces the orbitals shown below. The 
orbital energies for the bonding and non-bonding π MOs (labeled HOMO-2 and 
HOMO) are -15.4 and -11.5 eV, respectively. The HOMO-1 orbital is a lone 
pair orbital on the oxygen atom. 

The SCF orbital energy of the lowest unoccupied molecular orbital 
(LUMO) is 0.72 eV, which suggests that an electron of 0.72 eV might attach to 
produce the formamide anion. However, as the picture shown below illustrates, 
the LUMO is not even of π* symmetry, nor is the LUMO + 1 or the LUMO + 2 
orbital. In fact, these three unoccupied orbitals do not have any significant 
valence character; most of their amplitude is outside the formamide molecule’s 
molecular skeleton. They are, within the finite atomic orbital basis used, 
approximations to the free-electron orbital. 

The lowest unoccupied orbital of π* character is the LUMO + 3, which is 
also shown below, and this orbital has an energy of + 2.6 eV. However, in a 
different atomic orbital basis, the lowest unoccupied orbital of π* symmetry 
would not necessarily be LUMO + 3, nor would it necessarily have an orbital 
energy near  2.6 eV.   



 
  
To give the reader an idea of how these orbitals look for other atomic orbital 
basis sets, we show below four of the orbitals obtained when a 6-31G** basis is 
employed. 

 
We see that the HOMO-2 and HOMO are still π bonding and non-bonding 
orbitals and HOMO-1 is still an oxygen lone pair orbital, but now LUMO is 
the π* anti-bonding orbital. It is important to notice that the desired π* orbital 
may be the LUMO in one basis but might be another orbital in a different basis 
as it is in the examples shown above. 
  

Clearly, estimating the vertical electron affinity (EA) by using the energy 
of the LUMO is wrong, but we need to make clear what is wrong and how to 
properly identify the correct orbital. In fact, most of the low-energy vacant 
orbitals are nothing but attempts, within the finite orbital basis used, to represent 
a free electron plus a neutral formamide molecule. This illustrates the variational 
collapse problem mentioned above. 

Let us now explain how we can fix this error. To focus on the problem, 
we consider the effective potential that an electron approaching a formamide 
molecule from afar would experience. Also keep in mind that, as is conventional 
in electron scattering calculations, we may wish to decompose the wave function 
describing this ‘attached’ electron into products of radial and angular terms: 
 

€ 

Ψ(r,θ,φ) = RL ,M (r)YL,M (θ,φ).∑     (1) 



Substituting such an expansion into the Schrödinger equation 
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produces the usual set of coupled-channel equations. Multiplying the 
Schrödinger equation on the left by Y*L,M and integrating over the angles θ 
and ϕ, one obtains a radial equation for the ψL,M component of the wave 
function: 
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where <V> denotes the angular average of the electron-molecule potential 
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When the distance r of the electron from the molecule is large, <V> is 
dominated by an attractive Coulomb factor if the electron is interacting with a 
cation, by a charge-dipole potential if the electron is interacting with a polar 
neutral molecule, and by a repulsive Coulomb factor if the electron is interacting 
with a negative ion. However, the centrifugal potential ћ2<L2>/2mr2 always 
varies as r -2. 
         For the formamide case at hand, the longest-range component of <V> is 
the charge-dipole term, which varies as r-2. Moreover, the nodal character of 
the π* orbital into which the incoming electron is to attach has dominant L = 3 
character. To see this, we view this orbital from a long distance at which its 
three nuclear centers are nearly on top of one another as shown below. 

 
When viewed as having the O, C, and N nuclei on top of one another, this π* 
orbital clearly has nodal properties like that of an f-orbital which is why L = 3 is 
dominant at large-r. 
  



         An electron in an orbital having angular momentum L experiences an 
effective radial potential (i.e., the sum of <V> and the centrifugal potential) that 
varies as shown qualitatively below for a neutral molecule. For an electron 
interacting with an anion, the repulsive long-range part of the potential would 
also include a Coulomb term e2/r. In such cases, the barrier that acts to constrain 
the electron in the metastable state arises from both Coulomb and centrifugal 
factors. Nevertheless, the methods discussed here can still be used to 
characterize the metastable state’s energy and wave function. 
 

 
If, as in the case of formamide, the component of the potential generated by the 
attractive valence-range influences of the O, C, and N centers is not strong 
enough, no bound state of the anion will exist[3]. For such a case, only the 
metastable so-called L = 3 shape resonance state will occur and it will have an 
energy (the heavy horizontal line) and a radial wave function as shown below. 
 



 
In the valence region, the resonance function has large amplitude, suggesting 
that the electron is rather localized, it decays exponentially in the classically 
forbidden tunneling region, and it has sinusoidal oscillations beyond this region 
with the local de Broglie wavelength relating to the electron’s kinetic energy. 
         However, at energies both above and below that of the shape resonance 
state, there exists a continuum of other states. Those lying below the resonance 
energy vary with r as shown below. 
 

 
 
They have little amplitude in the valence region and have large amplitude at 
large-r and they have longer de Broglie wavelength and thus lower energy than 
the resonance state. There are also non-resonant states lying energetically above 
the shape resonance; they have little amplitude in the valence region and larger 
amplitude at large-r but with shorter de Broglie wavelength corresponding to 
higher kinetic energy. 
  



         So, how can we identify and characterize the resonance wave function 
(and its energy) when it is ‘buried’ within a continuum of higher- and lower- 
energy states? The example discussed earlier makes it clear we cannot rely on 
the orbital energy nor on choosing the LUMO to find the desired state. In the 
nuclear charge stabilization method[4], we attempt to smoothly slightly enhance 
the valence-region attractive character of the potential V that the attached 
electron experiences to an extent that pulls the energy of the metastable 
resonance state below zero thus rendering it stable[5]. We do this by altering the 
nuclear charges of those atoms over which the resonance MO is expected to be 
localized in the valence region. For formamide, we alter the O, C, and N nuclear 
charges from their actual values of 8, 6, and 7, respectively, to, for example, 
8+δq, 6+δq, and 7+δq, respectively. The nuclear charges appear in the electronic 
Hamiltonian in the electron-nuclear interaction potential 
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where the sum over j runs over all N electrons, the sum over K runs over all M 
nuclei of charge ZK. So, the nuclear charge scaling in formamide introduces an 
additional one-electron potential 
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that acts to differentially stabilize the electron’s potential energy near these 
nuclear centers. Visually, we can represent the effects of the scaled nuclear 
charges on the electron-molecule potential as shown below. 
 

 



 
Here, in black, we reproduce the original unscaled potential and its resonance 
wave function. In blue and red, we illustrate potentials in which the nuclear 
charges have been incremented by small (blue) or somewhat larger (red) 
amounts. The key thing to notice that is, if the nuclear charge enhancement is 
large enough, the valence-range component of the potential will be lowered 
enough to render the resonance state bound (notice the lack of continuum 
components at large-r and notice that the energy lies below zero) rather than 
metastable and thus amenable to studying using conventional variational-based 
quantum chemistry tools. In this manner, one can carry out conventional 
calculations on the nuclear charge enhanced species for a series of δq values (all 
of which must be large enough to render the desired state bound) and then 
extrapolate to δq→0 to allow the resonance state to be identified from the 
finite-δq calculations’ data. 
          

In practice, to use the nuclear charge stabilization method, one (for a 
series of δq values) 
1. Identifies those nuclei over which the valence component of the desired 
resonance state’s orbital will be distributed; 
2. Modifies the nuclear charges of these nuclei (one need not use equal charge 
increments for all the nuclei[6]) by increasing them by an amount δq; 
3. Carries out a standard, bound-state, quantum calculation (SCF, MPn, coupled-
cluster, or whatever) on the electron-attached[7] and non-attached states using the 
scaled nuclear charges to obtain attached (E*) and non-attached (E) state 
energies, after which 
4. One plots the energy difference (E-E*) vs. δq but using only δq values large 
enough to render E-E* > 0 (i.e., to make the attached state bound relative to the 
non-attached state), and 
5. One then extrapolates the plot to δq→0 to obtain an estimate of the energy of 
the electron-attached state relative to that of the parent non-attached species (i.e., 
in the extrapolation, one will find E-E* negative, meaning the electron attached 
species lies above its parent). 
In this manner, one achieves a nuclear charge stabilization estimate of the 
energy of the desired metastable state. 
 
In the figure shown below, we show Koopmans’ theorem[8], SCF-level, 
MP2-level, and coupled-cluster level energy differences (D) for the formamide 
and formamide π* anion obtained using the aug-cc-pVDZ  basis set discussed 
earlier. Only for values of δq equal to 0.18 or larger was the anion found to be 
electronically stable, so only data obtained with δq = 0.18 and higher were used 
in constructing these plots. 
 



 
 
The δq→0 extrapolated energies for each case are as follows: 
  
D = –4.3 eV (KT, red) and the fit’s correlation coefficient (squared) is: 
r2 = 0.99957. 
D = –3.6 eV (SCF, blue), r2 = 0.99996 
D = –3.1 eV (MP2, green), r2 = 0.99994 
D = –3.1 eV (CCSD(T), magenta),  r2 = 0.99994. 
  
When analogous nuclear charge stabilization calculations are performed using 
the 6-31G** basis, the plot shown below results. 
 

 
 
For this basis set, the extrapolated predictions of the D-values are as follows: 
  
D(KT) = -5.6 eV 



D(SCF) = -4.3 eV 
D(MP2) = -4.4 eV 
D(CCSD(T)) = -4.4 eV. 
  
These extrapolations represent the nuclear charge stabilization’s predictions for 
the energy of the anion’s metastable π* resonance state relative to that of the 
neutral for each level of theory. 
In addition, below we show the π* LUMO obtained for the aug-cc-pVDZ  basis 
set for δq = 0.19 and 0.26 to show how it differs significantly from the LUMO 
obtained in the non-scaled calculation which, as we explained earlier, cannot be 
trusted to relate to the desired resonance state. 
 

 
 
Clearly, this orbital has the desired valence character and nodal pattern. For δq = 
0.26 it is more compact than for δq = 0.19 because of the enhanced nuclear 
attraction in the former case. For the 6-31G** basis, this same orbital is shown 
below also for δq = 0.16 and δq = 0.29. 
 

 
 
We see that the qualitative character of the desired π* orbital does not depend on 
the basis set employed although the quantitative values of the resonance state 
energy do. For the larger basis and using the highest-level of theory (the 
CCSD(T) data), the π* attached anion is predicted to lie 3.1 eV above the neutral 
formamide at the neutral’s equilibrium geometry. Experiments using so-called 
electron transmission spectroscopy methods find[9] a resonance state to lie ca. 2 
eV above the neutral, so one can see that obtaining accurate estimates of the 



energies of such metastable states is difficult even when rather good atomic 
basis sets are employed. 
  

Details for using the G03 modifications. 
  
There are two steps that must be taken; one must identify those nuclei whose 
charges are to be altered and one must tell by how much to increase or decrease 
the charge of each nucleus. 
 
Specifiying the nuclear centers whose charges are to be modified 
  
IOp(3/110=Nmax) and IOp(7/110=Nmax) 
  
These IOps are used to tell Gaussian the highest numbered nuclear center range 
of atoms (centers in the geometry input list in your Gaussian .com file) in which 
there are the nuclei whose charges are to be modified. 
  
Example #1:  
To modify only the charge on center number 1, one needs to specify 
 IOp(3/110=1) and IOp(7/110=1). 
  
Example #2: 
To modify two nuclei whose numbers (in the geometry input specification) are 1 
and 2, one needs to specify IOp(3/110=2) and IOp(7/110=2). 
  
Example #3: 
To modify four nuclei whose numbers (in the geometry input specification) are 
13, 26, 27, and 67, one needs to specify IOp(3/110=67) and IOp(7/110=67). 
  
Briefly, the values of option 110 in overlay 3 and option 110 in overlay 7 have 
to be set to the highest numbered center that is to be modified, no matter how 
many centers will actually be modified. Note that option 110 should have the 
same value in both overlays (i.e., IOp(3/110=X1) and IOp(7/110=X2), where 
X1=X2). 
  
Warning: the largest possible value for this option is 90 in both overlays (see the 
“Limitations and known problems” section at the end of this manual), so make 
sure you number your atoms so that all of the atoms you intend to subject to 
charge scaling occur within the first 90 atoms.     
 
Modifying the nuclear charges on the selected centers 
  
IOp(3/111-200) and IOp(7/111-200) 



  
These IOps are used both to denote the centers to be modified and to specify the 
additional charge (δq) that is to be added to that center (or subtracted from it). 
  
To modify nuclear charge on center #N, the IOptions 3/(110+N) and 7/(110+N) 
must be set to a proper value.  The additional charge to be added to (or 
subtracted from) the Nth nucleus must be multiplied by 105 (100000) and set as 
the value in both IOptions 3/(110+N) and 7/(110+N). 
  
Example #1:  
To add the charge of 0.1 a.u. to the center number 1, one needs to 
specify IOp(3/111=10000) and IOp(7/111=10000) because: 
  
(i) the center number is 1 which corresponds to options 111 (110+1) in overlays 
3 and 7, and 
(ii) the charge to be added is 0.1 a.u. which corresponds to values of 10000 for 
options 111 in overlays 3 and 7 (because 0.1×105 = 10000). 
  
Example #2: 
To modify two nuclei whose numbers in the geometry input specification are 4 
and 17, by adding an extra positive charge of 0.03 a.u. to nucleus on center 4 
and charge of 0.58 a.u. to the nucleus on center 17, one needs to 
specify IOp(3/114=3000,3/127=58000) IOp(7/114=3000,7/127=58000) because 
  
(i) the number of the first center to be modified is 4 which corresponds to 
options 114 (110+4) in overlays 3 and 7, and 
(ii) the number of the second center to be modified is 17 which corresponds to 
options 127 (110+17) in overlays 3 and 7, and 
(iii) the charge to be added to the first modified center is 0.03 a.u. which 
corresponds to values of 3000 for options 114 in overlays 3 and 7 (because 
0.03×105 = 3000) for this center, and 
(iv) the charge to be added to the second modified center is 0.58 a.u. which 
corresponds to values of 58000 for options 127 in overlays 3 and 7 (because 
0.58×105 = 58000) for this center. 
  
Recall, that even though you are choosing the center numbers here, you still 
need to set the proper range by using IOp(3/110=Nmax)  and IOp(7/110=Nmax) 
(see the preceding section). 
 
Input examples 
  



Here we present a few examples of Gaussian03 input files showing single-point 
energy calculations and geometry optimization jobs that involve modified 
nuclear charges. 
  
Example #1:  
  
%chk=testSP 
#p RHF 6-31G(d)SCF=(Tight,NoVarAcc,Maxcycle=512,IntRep) 
GFInput IOp(6/7=3) IOp(3/32=1) 
IOp(3/110=3,3/111=33000,3/112=34000,3/113=33000) 
IOp(7/110=3,7/111=33000,7/112=34000,7/113=33000) 
  
Test job #1 
  
0  1 
 O 
 C  1 co2     
 N  2 nc3        1 nco3      
 H  2 hc4        1 hco4         3 dih4   
 H  3 hn5        2 hnc5         1 dih5   
 H  3 hn6        2 hnc6         1 dih6   
  
co2         1.277811 
nc3         1.496812 
nco3        116.154 
hc4         1.002000 
hco4        135.119 
dih4        172.107 
hn5         1.004634 
hnc5        107.935 
dih5       -119.695 
hn6         1.002000 
hnc6        112.357 
dih6          0.000 
  
In this job, the first three atoms are modified: charges of 0.33, 0.34, and 0.33 
a.u. are added to the oxygen atom, carbon atom, and nitrogen atom, respectively. 
So the resulting charges for atoms O, C, N are 8.33, 6.34, and 7.33 a.u., 
respectively, while those for hydrogen atoms remain unchanged. This is 
achieved in the 4th and 5th line of the input file. The Hartree-Fock single point 
energy for such a system will be calculated, with the 6-31G(d) basis sets, for the 
given geometry. 
 
Example #2:  
  
%chk=testOPT 
#p UHF 6-31G(d) SCF=(Tight,NoVarAcc,Maxcycle=512,IntRep) 
   GFInput IOp(6/7=3) IOp(3/32=1) OPT GUESS=READ 



   IOp(3/110=3,3/111=33000,3/112=34000,3/113=33000) 
   IOp(7/110=3,7/111=33000,7/112=34000,7/113=33000) 
  
Test job #2 
  
-1  2 
 O 
 C  1 co2     
 N  2 nc3        1 nco3      
 H  2 hc4        1 hco4         3 dih4   
 H  3 hn5        2 hnc5         1 dih5   
 H  3 hn6        2 hnc6         1 dih6   
  
co2         1.277811 
nc3         1.496812 
nco3        116.154 
hc4         1.002000 
hco4        135.119 
dih4        172.107 
hn5         1.004634 
hnc5        107.935 
dih5       -119.695 
hn6         1.002000 
hnc6        112.357 
dih6          0.000 
  
In this job, the first three atoms are modified: charges of 0.33, 0.34, and 0.33 
a.u. are added to the oxygen atom, carbon atom, and nitrogen atom, respectively. 
So the resulting charges for atoms O, C, N are 8.33, 6.34, and 7.33 a.u., 
respectively, while those for hydrogen atoms remain unchanged. This is 
achieved in the 4th and 5th line of the input file. The Hartree-Fock geometry 
optimization for such an anion will be performed, with the 6-31G(d) basis sets. 
 
Example #3:  
  
%chk=testOPT2 
#p UHF aug-cc-pVDZ SCF=(Tight,NoVarAcc,Maxcycle=512) 
   GFInput IOp(6/7=3) IOp(3/32=1) OPT GUESS=READ 
   IOp(3/110=5,3/111=33000,3/112=34000,3/115=33000) 
   IOp(7/110=5,7/111=33000,7/112=34000,7/115=33000) 
  
Test job #3 
  
-1  2 
O  0.000000    0.000000    0.000000 
C  0.000000    0.000000    1.277811 
H -0.700350    0.097094    1.987802 
H  1.412538   -0.830293    2.498962 
N  1.343557    0.000000    1.937584 



H  2.094138    0.000000    1.273783 
  
In this job, there are also three modified atoms: charges of 0.33, 0.34, and 0.33 
a.u. are added to the oxygen atom, carbon atom, and nitrogen atom, respectively. 
So the resulting charges for atoms O, C, N are 8.33, 6.34, and 7.33 a.u., 
respectively, while those for hydrogen atoms remain unchanged. This is 
achieved again in the 4th and 5th line of the input file. The Hartree-Fock 
geometry optimization for such an anion will be performed, with the 6-31G(d) 
basis sets. (Please note how the centers for modifications are specified via IOps 
and note that the atoms whose charges have been changed are the first, second, 
and fifth atoms). 
 
Some limitations and known problems 
  

• The maximum number of centers whose charges can be modified in one 
job is limited to 90, which is limited by the array size used for storing the 
IOps. 

  
• The maximum number of atoms in a molecule is not limited other than 

being subject to the same limitations as in any regular Gaussian03 input 
files. 

  
• The highest possible number for a modified center is 90. This means that 

the centers must be numbered so that all those to be charge-modified 
occur in the first 90. 

  
• The modified version of Gaussian03 has been tested for single-point 

energy and geometry optimization jobs. Calculating harmonic vibrational 
frequencies is also possible. Note that changing the nuclear charges does 
not affect the atomic masses, so quantities that depend on atomic masses 
(such as vibrational frequencies) are calculated in a standard G03 manner. 

  
• The value of the nuclear-nuclear repulsion energy, as well as its 

contributions to the gradients and Hessians, are calculated using the 
conventional  (non-modified) nuclear charges. 

  
• Some modifications of the nuclear charges are to be avoided because they 

can produce unexpected errors. In particular, changing any nuclear charge 
by 1 a.u. (or more) leads to problems since, de facto, this changes the 
chemical identity of the element. In such cases errors reported 
by MinBas appear (due to the comparison made by Gaussian03 in which 
the atomic number is compared with its nuclear charge). 

  



• In some cases, both the SCF procedure and the geometry optimization 
process can be more difficult to converge when modified nuclear charges 
are used, so it is recommended that one use the MaxCycle keyword to 
increase the number of maximum SCF iterations and optimization steps to 
improve chances for successful convergence. 

  
• Molecular properties such as populations (e.g., Mulliken population 

analysis, ESP-fitted charges according to the Merz-Singh-Kollman 
scheme, etc.), multipole moments, polarizability tensors, and other 
quantities that depend on the nuclear charges are evaluated with the 
modified nuclear charges. 

  
Please report any problems to: 
Piotr Skurski (piotr.skurski@ug.edu.pl)  
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by either placing the system inside a large spherical ‘box’ of radius R. By then 
varying the radius R, one can vary the de Broglie wave lengths of the orbitals 
generated. This, in turn, would allow one to ultimately identify a box size R that, 
within the finite orbital basis set employed, can generate an orbital (not 
necessarily and probably not the LUMO) that has a large valence-range 
component and a large-r component whose de Broglie wave length (and thus 
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(larger orbital exponents represent a smaller box). However, we have found this 
procedure to be more cumbersome than that which we have decided to automate 
in making our changes to G03. 
[6] That is, one can use a different value δqK for the Kth nucleus, but we have 
found it sufficient to increase the nuclear charges of all the nuclei over which the 
resonance orbital extends by equal amounts. Because one obtains the prediction 
of the resonance state’s energy by extrapolating to δq→0, it should not matter 
much whether one uses the same or different values of δq for the different 
nuclei.  
[7] In carrying out the SCF calculations (that also form the starting points of the 
MP2 and CCSD(T) calculations), one must be careful to singly-occupy the 
desired orbital (i.e., the π* orbital in the formamide case). The increased nuclear 
charges will act to lower the energy of not only the π* orbital but also of other 
orbitals that have significant density on the atomic centers whose charges have 
been enhanced. Thus, one may find that the energy ordering of the virtual 
orbitals changes as one moves from one δq value to another. As a result, one 
may need to employ the GUESS=ALTER keyword to maintain single 
occupancy of the desired orbital as part of the process of generating data to 
make the energy plots discussed here. 
[8] We are defining the Koopmans’ theorem electron binding energy to be the 
negative of the energy of the unoccupied orbital of the neutral molecule rather 
than the negative of the singly-occupied orbital of the anion. 
[9] M. Seydou, A. Modelli, B. Lucas, K. Konate, C. Desfrancois, and J.P. 
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