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What are these atomic basis orbitals (AOs)?

Slater-type orbitals (STOs) 


χn,l,m (r,θ,φ) = Nn,l,m,ζ  Yl,m (θ,φ) rn-1 e-ζr


are characterized by quantum numbers n, l, and m and exponents ζ (which

characterize the radial 'size' ) and are usually located on one of the atomic

nuclei.


Cartesian Gaussian-type orbitals (GTOs) 

χa,b,c (r,θ,φ) = N'a,b,c,α  xa yb zc exp(-αr2),


are characterized by quantum numbers a, b, and c, which detail the angular shape

and direction of the orbital, and exponents α which govern the radial 'size’.
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In contrast, GTOs have zero slope near r=0 because 


d/dr(exp(-αr2))r=0 = 0. 

This characteristic favors STOs over GTOs because we know that the correct


solutions to the Schrödinger equation have such cusps at each nucleus of a


molecule.  

However, the multi-center integrals which arise in polyatomic-molecule

 calculations cannot efficiently be evaluated when STOs are employed. In contrast,
 such integrals can routinely be computed when GTOs are used. This advantage of
 GTOs  has  lead  to  the  dominance  of  these  functions  in  molecular  quantum
 chemistry.


<χν(r) χη(r’) |1/r1,2 | χµ(r) χγ(r’)>
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To overcome the cusp weakness of GTO functions, it is common to combine
 two, three, or more GTOs, with combination coefficients that are fixed and not
 treated as LCAO parameters,  into new functions called contracted GTOs or
 CGTOs.  However,  does  not  really  correctly  produce  a  cusp  because  every
 Gaussian has a zero slope at r = 0 as shown below, so any combination will
 have  zero slope: 
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How well does STO-kG work?  Most common


Plots of r2|ψ|2 . The nuclear cusp condition is still not met.
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Most AO basis sets contain a mixture of different classes of functions.

Fundamental core and valence basis functions:

•  Polarization functions

•  Diffuse functions

•  Rydberg functions 

Core and valence:

Minimal basis - the number of CGTOs equals the number of core and valence
 atomic orbitals in the atom.  

Carbon - one tight s-type CGTO, one looser s-type CGTO and a set of three

looser p-type CGTOs. Five total CGTOs.
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Minimal  STO  and  GTO  carbon  1s,  2s,  and  2p  radial  functions
 compared to the results obtained using a large AO basis.


How well do minimal GTO or STO basis sets do?
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Triple-zeta (TZ) -  three  times as  many CGTOs as  the  number  of  core  and
 valence atomic orbitals (extensions to quadruple-zeta and higher-zeta bases also
 exist). Uusually, keep the core basis functions at minimal basis. Denoted VDZ.
 Fourteen total CGTOs for carbon. 

The use of more basis functions is motivated by a desire to provide additional


variational flexibility so the LCAO process can generate molecular orbitals of


variable diffuseness as the local electronegativity of the atom varies.


Double-zeta  (DZ)  -  twice  as  many  CGTOs  as  there  are  core  and  valence
 atomic  orbitals.  Uusually,  keep  the  core  basis  functions  at  minimal  basis.
 Denoted VDZ.

Carbon - one tight s, two looser s, and two sets of three looser p CGTOs. Nine

total CGTOs.  
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Examples of how VXZ bases are formed; VDZ{[3s] [2p]}, VTZ{[4s] [3p]}
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6-31G = Valence double zeta

1s:   6 primitive Gaussians
2s:   3 primitive Gaussian
2s':  1 primitive Gaussian
2p:  3 primitive Gaussians
2p': 1 primitive Gaussian

6-311G = VTZ

Add one extra s and p function (triple zeta)


In bases constructed by the Pople group, a different notation is used for VXZ
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C O

C O C O

C O

C O

Carbon pπ and dπ orbitals combining to 
form a bent π orbital

Oxygen pπ and dπ orbitals combining to form 
a bent π orbital

π bond formed from C and O bent (polarized) AOs  

An example of d polarization functions on C and O: 
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The polarization functions also can be used to dynamically correlate electrons
 as in 


Ψ = C1 | ..φα φβ..| - C2 | ..φ'α φ'β..|

= C1/2 { | ..( φ - xφ')α ( φ + xφ')β..| - | ..( φ - xφ')β ( φ + xφ')α..| } 



If φ and φ’ involve orbitals of different angular character (e.g., s and
 p, or dπ and pπ), one gains angular correlation.



If φ and φ’ involve orbitals of different
 radial character, one gains radial correlation.


2s and 2pz

2s + a 2p z

2s - a 2p z

 
left polarized       right polarized

π −xπ∗π + xπ∗

π∗

π
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s,  p,  d,  f,  and  g  angular  functions
 showing  how  they  span  more  and
 more of angle-space as L increases
 while  keeping  their  radial  sizes
 similar.
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2 2 2 3

1 2

Minimum basis

Double zeta

Valens double zeta

C (1s 2s 2p , P): 1s,2s,2p (2 s 1 p)
H(1s , S) : 1s (1 s)

C : 1s1s'2s2s'2p2p' (4 s 2 p)
H   :  1s1s'                      (2 s)

C : 1s2s2s'2p2p' (3 s 2 p)
H   :  1s1s'              

× ×

×

× ×

×

× ×

Valens double zeta polarization

Valens triple zeta polarization

          (2 s)

C : 1s2s2s'2p2p'3d (3 s 2 p  1 d)
H   :  1s1s'2p                    (2 s  1 p)

C : 1s2s2s'2s''2p2p'2p''3d3d'4f (4 s 3 p  2 d 1 f)
H   :  1

×

× × ×

× ×

× × × ×

s1s'1s''2p2p''3d           (3 s  2 p  1 d)× × ×

Examples of p-VXZ basis sets and numbers of functions


Notice that when
 polarization
 functions are
 added to VXZ
 bases, there are
 more added as
 X grows. 
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Correlation consistent polarized valence basis sets


2:double zeta, 3:triple zeta
cc-pVXZ   ,X 2,3,4...=

How do people (largely the Dunning group-now Kirk Peterson) create these bases?

1. Choose a sufficient number of primitive Gauss functions.

2. Perform an atomic Hartree-Fock calculation on the atom (use C as example).

3.


  

This results in χ
1s
HF ,χ

2s
HF ,χ

2 p
HF

In a cc-pVDZ basis add one Gaussian (primitive)

χ
3s

,χ
3 p

,χ
3d

  to χ
1s
HF ,χ

2s
HF ,χ

2 p
HF

The exponents in χ
3s

,χ
3 p

,χ
3d

 are optimized

in a CISD calculation of the energy for C   

 χ1s
HF

χ2s
HF χ2 p

HF

χ3s χ3 p χ3d cc-pVDZ (3s2 p1d)

+χ4s χ4 p χ4d χ4 f cc-pVTZ (4s3p2d1 f )

+χ5s χ5 p χ5d χ5 f χ5g cc-pVQZ (5s4 p3d 2 f 1g)

More generally, for cc-pVXZ


4.


5.
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Correlation energy (E-EHF) recovered by adding s and p valence orbitals as well
 as successive polarization functions for the carbon atom ground state. The
 energies are in 0.001 H and the calculations are at the CISD level (later).


-2.588
-0.896
-0.502
-0.421
-0.670
-0.099
ΔEQ/
 mEh


-11.014
-
-4.772
-1.833
-3.795
-0.650
ΔET/
 mEh


-84.100
-
-
-43.136
-19.394
-21.570
ΔED /
 mEh


ΔEcor
g
f
d
p
s


Notice how the total correlation energy as well as the contributions from 

successive s, p, d, and f functions evolves smoothly as X (in cc-p-VXZ)

grows.
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6-31G*


Add a polarization function 3d on C to 6-31G


6-31G**
 6-311G**


Add a polarization function 3d on C and 2p on H

to 6-31G or to 6-311G


In the Pople basis sets, a different notation is used to denote the

addition of polarization functions




In addition to core, valence, and polarization functions, one needs to add diffuse
 basis functions when treating species with low electron binding energies such as
 anions. In the Dunning notation, aug is used to say that diffuse functions have
 been added. aug-cc-pVTZ, cc-pVQZ, pVDZ.


VDZ, VTZ, VQZ or V5Z specifies at what level the valence (V) AOs are
 described. Nothing is said about the core orbitals because each of them is
 described by a single contracted Gaussian type basis orbital. 


“cc” specifies that the orbital exponents and contraction coefficients were
 determined by requiring the atomic energies computed using a correlated method
 to agree to within some tolerance with experimental data. If cc is missing, the AO
 exponents and contraction coefficients were determined to make the Hartree-Fock
 atomic state energies agree with experiment to some precision. 


“p” specifies that polarization basis orbitals have been included in the basis. 


“aug” specifies that (conventional) diffuse basis functions have been added, but
 the number and kind depend on how the valence basis is described. At the
 pVDZ level,  one s, one p, and one d diffuse function appear; at pVTZ a diffuse
 f function also is present; at pVQZ a diffuse g set is also added; and at pV5Z a
 diffuse h set is present. 




In the Pople bases, different notations are used:


6-31+G** or 3-21G*, 6-311+G*, or 6-31++G


3- or 6- specifies that the core orbitals are described in terms of a single
 contracted Gaussian orbital having 3 or 6 terms. 


–21 or –31 specifies that there are two valence basis functions of each type (i.e.,
 the valence basis is of double-zeta quality), one being a contraction of 2 or 3
 Gaussian orbitals and the other (the more diffuse of the two) being a contraction
 of a single Gaussian orbital. 


–311 specifies that the valence orbitals are treated at the triple-zeta level with the
 tightest contracted function being a combination of 3 Gaussian orbitals and the
 two looser functions being a single Gaussian function.


* specifies that polarization functions have been included on the atoms other than
 hydrogen; ** specifies that polarization functions are included on all atoms,
 including the hydrogen atoms.


+ denotes that a single set of (conventional) diffuse valence basis AOs have been
 included; ++ means that two such sets of diffuse valence basis AOs are present. 
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Keep in mind how things scale with the number of basis functions:


Calculating two-electron integrals<χa(1)χb(2)|1/r1,2 |χc(1)χd(2) > -M4


Solving the HF matrix eigenvalue equations for εk and ϕk- M3 
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Core, valence and polarization functions do not provide enough radial
 flexibility to adequately describe very diffuse charge densities as in Rydberg
 species and dipole-bound species.  

The diffuse basis functions tabulated, for example, on the PNNL web site
 (http://www.emsl.pnl.gov/forms/basisform.html) or from Prof. Kirk
 Peterson’s sources (http://tyr0.chem.wsu.edu/~kipeters/Pages/ccbasis.html and
 http://tyr0.chem.wsu.edu/~kipeters/basissets/basis.html ) are appropriate if, for
 example, the anion under study has its excess electron in a valence-type orbital
 (e.g., as in F-, OH-, carboxylates, etc.) but not for very weakly bound anions
 (e.g., having EAs of 0.1 eV or less).


For an electron in a Rydberg orbital, in an orbital centered on the positive site
 of a zwitterion species, or in a dipole-bound orbital, one must add to the bases
 containing valence, polarization, and conventional diffuse functions yet another
 set of functions that are extra diffuse. The exponents of these extra diffuse basis
 functions can be obtained by scaling the conventional diffuse functions’
 smallest exponent (e.g., by adding functions having exponents 1/3, 1/9, 1/27,
 etc. those of the most diffuse conventional diffuse function).  
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An example of a species needing extra diffuse basis functions: Arginine anion
 in its zwitterion and canonical (dipole bound) structures.
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One of  the  strong  points  of  cc-pVXZ basis  sets  is  that  the  HF and
 correlation energies vary with X in a manner that allows extrapolations to be
 carried out.


Ln(error in HF energy
 (mH))vs. X 

Ln(error in correlation
 energy (mH)) vs. X


MP2 correlation energy(mH)
 of N2 vs X 

Because the HF energy varies with X as 


EHF = EHF(X) -B exp(-aX), 


it can be extrapolated using this form (usually X = 3 is good enough). 
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Given the correlation energy computed at two values X, Y (EX , EY): 

one assumes the energy to vary with X as  

E = EX+ A X-3 and E = EY + A Y-3  
using the two values of X and Y and EX and EY gives 

E = [X3EX -Y3EY]/(X3-Y3) and A = - [EX-EY]/(X-3-Y-3) 

This  allows  one  to  extrapolate  the  correlation  energy  to  the  so-called
 complete-basis  set  limit  (CBS).  It  is  found  that  X=2,  Y=3  does  gives
 accuracy of ca. 23 mH, and X = 3, Y= 4 gives ca. 5 mH accuracy. 1 mH is
 0.6 kcal mol-1. 



25 

One more thing to be aware of regarding finite atomic orbital basis sets is the issue
 of basis set superposition errors  (BSSE) and how to use the counterpoise method
 to correct for them. 


Suppose you wish to compute the interaction energy of two fragments, A and B (or,
 alternatively, the dissociation of A-B into A and B). Normally, you would place
 basis functions on A and on B and carry out the calculation of the A-B complex at
 some inter-fragment distance R to obtain an energy EA-B (R). The interaction
 energy at each R-value would then be EA-B (R) – EA – EB. 


In the counterpoise method, one computes the interaction energy as EA-B (R) – ECP
A

 – ECP
B where ECP

A is the energy of fragment A calculated with A’s basis set and
 with B’s basis set located at R where B sits, but with none of B’s nuclei or
 electrons present. Likewise, ECP

B is the energy of fragment B calculated with B’s
 basis set and with A’s basis set located at R where A sits, but with none of A’s
 nuclei or electrons present. So, ECP

A and ECP
B are energies of A and B but with so

-called “ghost” basis sets also present. 

The difference between EA + EB and ECP

A + ECP
B is called the BSSE correction.

 BSSE is caused by A’s using some of B’s basis to lower A’s energy and B using
 some of A’s basis to lower B’s energy. 



