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What are these atomic basis orbitals (AOs)?
Slater-type orbitals (STOs)

Xnlm (r,@ ’q)) = Nn,l,m,@ Yl,m (eaq)) 1 et

are characterized by quantum numbers n, 1, and m and exponents C (which

characterize the radial 'size' ) and are usually located on one of the atomic
nuclei.

Cartesian Gaussian-type orbitals (GTOs)
Xabe @00) =N'yp o x*y° z° exp(-ar?),

are characterized by quantum numbers a, b, and ¢, which detail the angular shape
and direction of the orbital, and exponents Ot which govern the radial 'size’.



Slater-type orbitals are similar to Hydrogenic orbitals in the regions
close to the nuclei. Specifically, they have a non-zero slope near the nucleus on
which they are located

(ie., d/dr(exp(-Cr))._, = -C,

so they can have proper electron-nucleus cusps.

In contrast, GTOs have zero slope near r=0 because

d/dr(exp(-ar?)) _, = 0.
This characteristic favors STOs over GTOs because we know that the correct

solutions to the Schrodinger equation have such cusps at each nucleus of a

molecule.

However, the multi-center integrals which arise in polyatomic-molecule
calculations cannot efficiently be evaluated when STOs are employed. In contrast,
such integrals can routinely be computed when GTOs are used. This advantage of

GTOs has lead to the dominance of these functions in molecular quantum
chemistry.
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To overcome the cusp weakness of GTO functions, it is common to combine
two, three, or more GTOs, with combination coefficients that are fixed and not
treated as LCAO parameters, into new functions called contracted GTOs or
CGTOs. However, does not really correctly produce a cusp because every

Gaussian has a zero slope at r = 0 as shown below, so any combination will
have zero slope:

tight Gaussian

orbital with cusp atr=0

loose Gaussian

medivm Gaussian




How well does STO-kG work? Most common
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Fig. 8.1. Radial distribution functions of the 1s STO-kG basis functions (thin lines) superimposed on a Is
STO with ¢ = 1 (thick erev lines) (atomic unitg)

Plots of r?hpl?> . The nuclear cusp condition is still not met.



Most AO basis sets contain a mixture of different classes of functions.
Fundamental core and valence basis functions:

e Polarization functions

e Diffuse functions

* Rydberg functions

Core and valence:

Minimal basis - the number of CGTOs equals the number of core and valence
atomic orbitals in the atom.

Carbon - one tight s-type CGTO, one looser s-type CGTO and a set of three
looser p-type CGTOs. Five total CGTOs.



How well do minimal GTO or STO basis sets do?
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compared to the results obtained using a large AQ basis.

3.0 0.6 () 6

s

2

©

L)
i~

1.5 0.3 03




Double-zeta (DZ) - twice as many CGTOs as there are core and valence
atomic orbitals. Uusually, keep the core basis functions at minimal basis.
Denoted VDZ..

Carbon - one tight s, two looser s, and two sets of three looser p CGTOs. Nine
total CGTOs.

Triple-zeta (TZ) - three times as many CGTOs as the number of core and
valence atomic orbitals (extensions to quadruple-zeta and higher-zeta bases also
exist). Uusually, keep the core basis functions at minimal basis. Denoted VDZ..
Fourteen total CGTOs for carbon.

The use of more basis functions is motivated by a desire to provide additional
variational flexibility so the LCAO process can generate molecular orbitals of

variable diffuseness as the local electronegativity of the atom varies.



Examples of how VXZ bases are formed; VDZ{[3s] [2p]}, VTZ{[4s] [3p]}
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Fig. 8.3. The radial distribution functions of the 3 P ground-state orbitals of the carpon atom (atomic unils).
The thick grey lines are the numerical Hartree—Fock orbitals, the thin black lings are the Hartree—Fogk
orbitals expanded in the (955 p) basis of Huzinaga in Table 8.2.

Table 8.2 The Gaussian (955 p) exponents and expansion

coefficients for the P ground-state carbon orbitals

Exponents Ls

2s

Table 8.3 Dunning’s segmented conffactions of the Huzinaga carbon (9s5 p) basis

- Exponents [3s] [451Y [55] [2p] (3p]
4232.61 0.00122 —0.00026
4232.61 0.002029 0.002029 0.006228
634.882 0.00934 —0.00202 634.882 0.015535 0.015535 0.047676
146.097 0.04534 —0.00974 146.097 0.075411 0.075411 0.231439
42.4974 0.15459 —0.03606 424974 0257121 0257121 0.789108
14.1892 0.596555 0.596555 0.791751
14.1892 Q.35867 —0.08938 1.9666 0.242517 0.242517 0.321870
1.9666 0.14581 —0.05267 0.4962 0.542048 1.000000 1.000000
0.4962 0.00199 0.57408 0.1533 0.517121 1.000000 1.000000
0.1533 0.00041 0.54768 18.1557 0.018534 0.039196
3.9864 0.115442 0.244144
18.1557 0.01469 1.1429 0.386206 0.816775
3.9864 0.09150 0.3594 0.640089 1.000000
1.1429 0.30611 0.1146 1.000000 1.000000
0.3594 0.50734 -
0.1146 0.31735




In bases constructed by the Pople group, a different notation is used for VXZ

6-31G = Valence double zeta

Is: 6 primitive Gaussians

2s: 3 primitive Gaussian
2s": 1 primitive Gaussian
2p: 3 primitive Gaussians

2p": 1 primitive Gaussian
6-311G =VTZ

Add one extra s and p function (triple zeta)




one higher angular momentum than appears in the atom's valence orbital
space.

d-functions for C, N, and O and p-functions for H with exponents (C or Q)
which cause their radial sizes to be similar to the sizes of the valence
orbitals.

Note: the polarization p orbitals of H are similar in size to the valence 1s
orbital and the polarization d orbitals of C are similar in size to the 2s and 2p
orbitals, not like the valence d orbitals of C.

Polarization functions give angular flexibility to the LCAO process in
forming molecular orbitals between from valence atomic orbitals.

Polarization functions also allow for angular correlations in describing the
correlated motions of electrons.

10



An example of d polarization functions on C and O:

Carbon p, and d, orbitals combining to
form a bent = orbital

< 7

Oxygen p, and d, orbitals combining to form
a bent = orbital

n bond formed from C and O bent (polarized) AOs

11



The polarization functions also can be used to dynamically correlate electrons
as in

W=C,l.4a .- C,l.d'ad'B..
=C2{1.(&-x0"0 (& +x0")B.d =1 .. & - x¢")B (& + x¢)ar.d }

If ¢ and ¢’ involve orbitals of different angular character (e.g., s and
p, or di and pm), one gains angular correlation.

SPE

2s+a?lp,

T+ X*

2s and 2p, left polarized rlght polarized

If ¢ and ¢’ involve orbitals of different

radial character, one gains radial correlation. -’



s, p, d, f, and g angular functions
showing how they span more and
more of angle-space as L increases
while keeping their radial sizes
similar.

13



Examples of p-VXZ basis sets and numbers of functions

Minimum basis
C (1s*2s*2p°,’P): 1s,2s,2p (2xs 1xp)
H(1s',?S) . Is (1xs)

Double zeta

C : 1s1s'282s2p2p' (4xs 2xp)
H : Isls' (2xs)
Valens double zeta Notice that when
C : 18282s2p2p' (3xs 2xp) > ;
o ele e polar%zatlon
functions are
Valens double zeta polarization added to VX7
C : 1s2s2s2p2p3d (B3xs 2xp 1xd
| bases, there are
H : 1s1s2p (2xs Ixp)
more added as
Valens triple zeta polarization X grows.
C : 1825252s8"2p2p2p"3d3d'4f (4xs 3xp 2xd 1xf)

H : Isls'ls"2p2p"3d (3xs 2xp 1xd) 14



Correlation consistent polarized valence basis sets

cc-pVXZ ,X=2,3,4..
2:double zeta, 3:triple zeta

How do people (largely the Dunning group-now Kirk Peterson) create these bases?
1. Choose a sufficient number of primitive Gauss functions.

2. Perform an atomic Hartree-Fock calculation on the atom (use C as example).
3.

More generally, for cc-pVXZ

This results in Xﬁ ", stF , ij
HF

4. X1,
In a cc-pVDZ basis add one Gaussian (primitive) . HF , HF
HF _HF _HF Xas sz

X X, Xy COX s Xss 5 X,

n \5 o Xy Xsp Xag cc-pVDZ (3s2pld)

The exponents in x_, Xs,» Xy, are optimized Ft Xas Xap Xaa Xay cc-pVTZ (4s3p2dlf)

in a CISD calculation of the energy for C t Xss Xsp Xsq Xsrp Xsg cc-pVQZ (5s4p3d2 f1g)

15



Correlation energy (E-Eyg) recovered by adding s and p valence orbitals as well
as successive polarization functions for the carbon atom ground state. The
energies are in 0.001 H and the calculations are at the CISD level (later).

S p d f g AEcer
AE,/ | -21.570 | -19.394 | -43.136 - - -84.100
mE,
AE./ -0.650 -3.795 | -1.833 | -4.772 - -11.014
mEh
AEQ/ -0.099 -0.670 | -0421 | -0.502 | -0.896 | -2.588
mEh

Notice how the total correlation energy as well as the contributions from

successive s, p, d, and f functions evolves smoothly as X (in cc-p-VXZ)
grows.

16



In the Pople basis sets, a different notation is used to denote the
addition of polarization functions

6-31G*

Add a polarization function 3d on C to 6-31G

6-31G**  6-311G**

Add a polarization function 3d on C and 2p on H
to 6-31G or to 6-311G

17



In addition to core, valence, and polarization functions, one needs to add diffuse
basis functions when treating species with low electron binding energies such as
anions. In the Dunning notation, aug is used to say that diffuse functions have

been added. aug-cc-pVTZ, cc-pVQZ, pVDZ.

VDZ,VTZ,VQZ or V5Z specifies at what level the valence (V) AOs are
described. Nothing is said about the core orbitals because each of them is
described by a single contracted Gaussian type basis orbital.

““cc” specifies that the orbital exponents and contraction coefficients were
determined by requiring the atomic energies computed using a correlated method
to agree to within some tolerance with experimental data. If cc is missing, the AO
exponents and contraction coefficients were determined to make the Hartree-Fock
atomic state energies agree with experiment to some precision.

“p”’ specifies that polarization basis orbitals have been included in the basis.

‘““aug’ specifies that (conventional) diffuse basis functions have been added, but
the number and kind depend on how the valence basis is described. At the
pVDZ level, one s, one p, and one d diffuse function appear; at pVTZ a diffuse
f function also is present; at pVQZ a diffuse g set is also added; and at pV35Z a
diffuse h set is present.



In the Pople bases, different notations are used:
6-31+G** or 3-21G*, 6-311+G*, or 6-31++G

3- or 6- specifies that the core orbitals are described in terms of a single
contracted Gaussian orbital having 3 or 6 terms.

—21 or -31 specifies that there are two valence basis functions of each type (i.e.,
the valence basis is of double-zeta quality), one being a contraction of 2 or 3
Gaussian orbitals and the other (the more diffuse of the two) being a contraction
of a single Gaussian orbital.

—311 specifies that the valence orbitals are treated at the triple-zeta level with the
tightest contracted function being a combination of 3 Gaussian orbitals and the
two looser functions being a single Gaussian function.

* specifies that polarization functions have been included on the atoms other than
hydrogen; ** specifies that polarization functions are included on all atoms,
including the hydrogen atoms.

+ denotes that a single set of (conventional) diffuse valence basis AOs have been
included; ++ means that two such sets of diffuse valence basis AOs are present.



Keep in mind how things scale with the number of basis functions:
Calculating two-electron integrals<y,(1)x,(2)I1/r; , Ix (1)x4(2) > -M*

Solving the HF matrix eigenvalue equations for ¢, and ¢, - M-’

20



Core, valence and polarization functions do not provide enough radial
flexibility to adequately describe very diffuse charge densities as in Rydberg

species and dipole-bound species.

The diffuse basis functions tabulated, for example, on the PNNL web site
(http://www.emsl.pnl.gov/forms/basisform.html) or from Prof. Kirk
Peterson’s sources (http://tyr0.chem.wsu.edu/~kipeters/Pages/ccbasis.html and
http://tyr0.chem.wsu.edu/~Kkipeters/basissets/basis.html ) are appropriate if, for
example, the anion under study has its excess electron in a valence-type orbital
(e.g.,as in F, OH-, carboxylates, etc.) but not for very weakly bound anions
(e.g., having EAs of 0.1 eV or less).

For an electron in a Rydberg orbital, in an orbital centered on the positive site
of a zwitterion species, or in a dipole-bound orbital, one must add to the bases
containing valence, polarization, and conventional diffuse functions yet another
set of functions that are extra diffuse. The exponents of these extra diffuse basis
functions can be obtained by scaling the conventional diffuse functions’
smallest exponent (e.g., by adding functions having exponents 1/3, 1/9, 1/27,

etc. those of the most diffuse conventional diffuse function).
21



An example of a species needing extra diffuse basis functions: Arginine anion
in its zwitterion and canonical (dipole bound) structures.
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S
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>
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One of the strong points of cc-pVXZ basis sets is that the HF and
correlation energies vary with X in a manner that allows extrapolations to be
carried out.

MP?2 correlation energy(mH)  Ln(error in HF energy  Ln(error in correlation

of N, vs X (mH))vs. X energy (mH)) vs. X
-350
-400
-450
-500 |
3 6 9 12 S E

Because the HF energy varies with X as

Eyr = Ege(X) -B exp(-aX),

it can be extrapolated using this form (usually X = 3 is good enough). 23



Given the correlation energy computed at two values X, Y (Ey , Ey):

one assumes the energy to vary with X as
E=E+AX3andE=E, +AY?3
using the two values of X and Y and E and E gives

E = [X°Ex -YPEyJ/(X*-Y?) and A = - [Ex-EyJ/(X3-Y?)

This allows one to extrapolate the to the so-called
complete-basis set limit (CBS). It is found that X=2, Y=3 does gives

accuracy of ca. 23 mH, and X = 3, Y= 4 gives ca. 5 mH accuracy. 1 mH is
0.6 kcal mol-!.

24



One more thing to be aware of regarding finite atomic orbital basis sets is the issue
of basis set superposition errors (BSSE) and how to use the counterpoise method
to correct for them.

Suppose you wish to compute the interaction energy of two fragments, A and B (or,
alternatively, the dissociation of A-B into A and B). Normally, you would place
basis functions on A and on B and carry out the calculation of the A-B complex at
some inter-fragment distance R to obtain an energy E, ; (R). The interaction
energy at each R-value would thenbe E, ; (R)—E, —E;

In the counterpoise method, one computes the interaction energy as E, ; (R) — E“F,
— E“Y; where E¢F, is the energy of fragment A calculated with A’s basis set and
with B’s basis set located at R where B sits, but with none of B’s nuclei or
electrons present. Likewise, EC"; is the energy of fragment B calculated with B’s
basis set and with A’s basis set located at R where A sits, but with none of A’s
nuclei or electrons present. So, E“Y, and E“*;; are energies of A and B but with so
-called “ghost™ basis sets also present.

The difference between E, + E; and E“Y, + E¢F}; is called the BSSE correction.
BSSE is caused by A’s using some of B’s basis to lower A’s energy and B using

some of A’s basis to lower B’s energy.
25



